Multi-shank NeuroNexus 32- and 64-channel probes were used to record across and through rodent visual cortex, while single-shank NeuroNexus probes spanned lateral regions to enable tracking of receptive fields. Penetrations were marked with DiI. The results by Eugenio Piasini and Liviu Soltuzu et al. in Davide Zoccolan’s group revealed a hierarchy in processing of dynamic visual stimuli that includes increasingly sustained responses by deeper “ventral stream” visual areas.
Read publicationOran et. al used NeuroNexus linear probes (A1x16-10mm-100- 500-177) to evaluate the mechanisms of interhemispheric correlations and their dependence on behavioral state in the barrel cortex of awake mice. They showed that the interhemispheric correlations between the two barrel cortices depend on whisking state, and that the majority of these correlations were decreased during whisking compared to quiet wakefulness. Furthermore, despite general elevated firing rate in the whisking state, the activity of imaged callosal fibers was decreased. These results suggest the causal role of corpus callosum activity in mediating interhemispheric communication, as well as its dependence on the behavioral state of the animal.
Read publicationResults of Krichberger et al. paper using Neuronexus A1x32-5mm-25-177 linear probes along with optogenetics revealed how figure-ground modulation is necessary for perception. Also, they showed that the interactions between lower (V1) and higher areas of the visual cortex shape visual perception, enabling the co-selection of image elements that belong to a single figure and their segregation from the background.
Read publication