Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision
Timothy Brown’s team from the University of Manchester used the NeuroNexus SmartBox and 32-, 64-, and 256-channel probes of three different designs (linear, tetrode, polytrode) to record from lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR). Multispectral stimuli were used to address the color processing and neuron properties at higher visual processing stages. Their findings show that cones alone support a diverse capacity for color discrimination that operates for small spatially localized stimuli and diffuse changes in illumination across a range of light levels, providing a robust substrate for mouse color vision. They also demonstrated that cone inputs to opponent neurons derive from the central and upper visual field.
Related Topics
Intern Spotlight: A Transformative Journey in Neurotechnology
We are thrilled to share the incredible …
Read publication
Exploring Auditory Neuroscience at the Biennial Woods Hole Summer School: A Deep Dive into the Biology of the Inner Ear
Every two years, some of the brightest m…
Read publication
7 Years Later: Revolutionizing Neural Research with SiC
NeuroNexus is committed to continuous im…
Read publication
A brief history of electrode technology
Our history of microelectrode technology…
Read publication