High-sensitivity detection of optogenetically-induced neural activity with functional ultrasound imaging
Edelman et al. from Stanford University implanted NeuroNexus 16-channel linear neural electrodes (A1x16-5mm-50-703-A16) into the bilateral primary motor cortex and striatum of mice. They found that functional ultrasound imaging (fUSI) is a more sensitive hemodynamic readout of optogenetically-induced neuronal activity compared to fMRI. Additionally, they found that LFP signals in the bilateral M1 and striatum co-localized better with fUSI activation patterns than those of fMRI. By isolating the arterial and venous components of the vascular response, they showed that fUSI can map large-scale neural circuit activity with vessel-type specificity.
Related Topics
Intern Spotlight: A Transformative Journey in Neurotechnology
We are thrilled to share the incredible …
Read publication
Exploring Auditory Neuroscience at the Biennial Woods Hole Summer School: A Deep Dive into the Biology of the Inner Ear
Every two years, some of the brightest m…
Read publication
7 Years Later: Revolutionizing Neural Research with SiC
NeuroNexus is committed to continuous im…
Read publication
A brief history of electrode technology
Our history of microelectrode technology…
Read publication