Learn about Radiens Neuroanalytics

The Radiens™ neuroanalytics software system provides professional-grade, high-performance, and flexible solutions across the entire electrophysiology workflow from data acquisition and instrument control to data curation, powerful analytics, and advanced data visualization.

New product package: H128LP

Cutting-edge Neural Interfaces

Science Updates

Bilal Haider’s lab at Georgia Tech used NeuroNexus 32-channel probes with linear and poly3 layouts to record neural activity across layers of V1 and LGN, respectively, in head-fixed stationary mice. Their results showed that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across LFP, spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN.

 

More

Edelman et al. from Stanford University implanted NeuroNexus 16-channel linear neural electrodes (A1x16-5mm-50-703-A16) into the bilateral primary motor cortex and striatum of mice. They found that functional ultrasound imaging (fUSI) is a more sensitive hemodynamic readout of optogenetically-induced neuronal activity compared to fMRI. Additionally, they found that LFP signals in the bilateral M1 and striatum co-localized better with fUSI activation patterns than those of fMRI. By isolating the arterial and venous components of the vascular response, they showed that fUSI can map large-scale neural circuit activity with vessel-type specificity.

 

More

Winkel et al. used NeuroNexus Optoelectrode (A1x16-10 mm-100-177-OA16LP) and SmartBox neural interface processor to capture local field potential data from V1 of mice. They showed that TrkB activation in PV interneurons dynamically regulates the intrinsic properties of the same interneurons by decreasing their intrinsic excitability and switching the PV network into a plastic configuration, which orchestrates adult cortical plasticity states and mediates the effects of antidepressants on neuronal plasticity.

 

More

Carl Schoonover et al. published their results in Nature by implanting NeuroNexus A1x32-Poly3-5mm-25s-177 silicon probes into the primary olfactory cortex of mice. They showed that odor-evoked activity in the mouse anterior piriform cortex exhibits rapid and cumulative reorganization over time.

 

More

Multi-shank NeuroNexus 32- and 64-channel probes were used to record across and through rodent visual cortex, while single-shank NeuroNexus probes spanned lateral regions to enable tracking of receptive fields. Penetrations were marked with DiI. The results by Eugenio Piasini and Liviu Soltuzu et al. in Davide Zoccolan’s group revealed a hierarchy in processing of dynamic visual stimuli that includes increasingly sustained responses by deeper “ventral stream” visual areas.

 

More

Timothy Brown’s team from the University of Manchester used the NeuroNexus SmartBox and 32-, 64-, and 256-channel probes of three different designs (linear, tetrode, polytrode) to record from lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR). Multispectral stimuli were used to address the color processing and neuron properties at higher visual processing stages. Their findings show that cones alone support a diverse capacity for color discrimination that operates for small spatially localized stimuli and diffuse changes in illumination across a range of light levels, providing a robust substrate for mouse color vision. They also demonstrated that cone inputs to opponent neurons derive from the central and upper visual field.

 

More

Multiple NeuroNexus probe designs (A2x32-5mm-25-200-177, A4x8-5mm-100-200-177, Buzsaki32 and Buzsaki64) were used by Andrew King’s lab at Oxford to record from primary sensory cortices, auditory thalamus and inferior colliculus in mice. NeuroNexus probes were also combined with optical stimulation for optogenetics experiments and with DiI dye for acute penetration histology in this study in Nature Communications. The results demonstrate that activity in somatosensory cortex caused by whisker stimulation suppresses sound-evoked activity in primary auditory cortex via the colliculus and thalamus, providing an example of subcortical pathways mediating intra-cortical communication.

 

More

Oran et. al used NeuroNexus linear probes (A1x16-10mm-100- 500-177) to evaluate the mechanisms of interhemispheric correlations and their dependence on behavioral state in the barrel cortex of awake mice. They showed that the interhemispheric correlations between the two barrel cortices depend on whisking state, and that the majority of these correlations were decreased during whisking compared to quiet wakefulness. Furthermore, despite general elevated firing rate in the whisking state, the activity of imaged callosal fibers was decreased. These results suggest the causal role of corpus callosum activity in mediating interhemispheric communication, as well as its dependence on the behavioral state of the animal.

 

More

Gaillet et al. used the NeuroNexus ECoG array, E32-1000-30-200, to record cortical activity along with a support vector machine classification algorithm to classify cortical responses originating from visual and electrical stimuli. They confirmed an increase in classification accuracy with increased center-to-center separation on patterned visual stimulation. Additionally, their results demonstrated the classification accuracy's dependence on the current amplitude, with higher accuracy at higher amplitudes. They also used a regression model to add a predictive capacity. Using a regression model, they showed that cortical activities elicited by electrical stimulation are meaningfully different, as it highlights features that vary in a linear manner, which can be expected from cortical activity patterns resulting from the stimulation of a gradually shifted portion of the visual field. These results represent a necessary, although not sufficient, condition for an optic nerve prosthesis to deliver vision with non-overlapping phosphene.

 

More

Results of Krichberger et al. paper using Neuronexus A1x32-5mm-25-177 linear probes along with optogenetics revealed how figure-ground modulation is necessary for perception. Also, they showed that the interactions between lower (V1) and higher areas of the visual cortex shape visual perception, enabling the co-selection of image elements that belong to a single figure and their segregation from the background.

 

More

Richter et al. explored the possibility of exchanging neural information between the brains of guinea pig and human. They determined characteristic frequency and recorded guinea pig inferior colliculus (ICC) neural response patterns to single spoken words with NeuroNexus A1x16-5mm-100-177 probes. The single-word spike trains were then played through corresponding electrodes of cochlear implants in human subjects. Subject performance on a few word recognition tests was better than chance, confirming the possibility of lexical information transmission from an animal auditory system to the human auditory system.

 

More

The Kraskov group used NeuroNexus 32-channel polytrodes (A1x32-Poly3-5mm-25s-177) to record fast and slow motor cortex (M1) pyramidal tract neurons (PTNs) in macaque. Their findings emphasize the importance of pairing electrophysiological and optogenetic approaches in classifying neurons into anatomical and morphological categories.

 

More

Viejo and Peyrache took advantage of NeuroNexus 8-shank polytrodes to sample from multiple sub-nuclei in the anterior thalamus in awake behaving mice. They were able to identify head direction (HD) cells in the AD nucleus and characterize firing rates and burstiness of HD and non-HD cells. Results demonstrated that AD HD cells specifically increase gain and coherence during hippocampal sharp wave ripples.

 

More

Congratulations to the Colonnese lab for their new publication in #eNeuro. They used Poly2 probes for dense acute recordings in mouse pup V1 to demonstrate that retinal input does not govern developmental increases in cortical activity. Their recordings were done with the NeuroNexus SmartBox system. Learn more about the updated system here.

 

More

Using NeuroNexus linear arrays, dense sampling through the auditory cortex enabled computation of bipolar derivation LFPs for supragranular and infragranular layers. LFPs were also sampled across the posterior auditory field within the ectosylvian sulcus. This study is a great example of using NeuroNexus probes to target hard-to-reach areas.

 

More
Yu et al. studied the effects of transcranial focused ultrasound modulation by opto-tagging and recording from different neuron types using NeuroNexus opto-electrodes and standard probes. Neural data was recorded using the NeuroNexus SmartBox.

 

More
Nelson Totah et al. recently published their paper studying prefrontal cortical control of the locus coeruleus. They use two different NeuroNexus 32-channel probe designs to record single units in anesthetized rats.

 

More

There's a new paper out from Dr Tracy Cui's lab in which NeuroNexus probes were tested under precise stimulation conditions. We are proud to provide devices with consistent electrode site properties to enable studies like this. Congratulations Sally Zheng and co-authors!

 

More

It's always exciting when translational studies come out with NeuroNexus as part of the basic science.

Congratulations to the authors!

 

More

Morgan Urdaneta's publication out of Kevin Otto's lab is here! Read it to see how NeuroNexus linear arrays enabled them to define tachaxies across cortical layers.

 

More

Hot off the presses! We're excited about this new publication featuring a one-of-a-kind custom NeuroNexus silicon microelectrode. This probe has two different shank lengths, as well as a combination of recording and simulation electrode sites.

 

More

This collaboration between the Dietmar Schmitz and Gyorgy Buzsaki labs utilized 32-channel and 256-channel multi-shank NeuroNexus probes and optoelectrodes. The geometry of the probes enabled positioning shanks in the mouse hippocampus/dentate gyrus, subiculum and granular retrosplenial cortex simultaneously. Through acute electrophysiology and optogenetic manipulation, this team defined a pathway by which sharp wave ripples communicate from the hippocampus to cortex.

 

More

This publication in eNeuro provides highlights valuable data obtained from acute recordings with standard NeuroNexus catalog probes in macaque visual cortices. The researchers covered the skull with acrylic resin, performed a craniotomy through the resin, then inserted silicon probes through a slit in the dura. Re-use of the probes and multiple recordings in the same animals were achieved with this method. Original recordings were published here. The present study’s computational results suggest that saliency of visual stimuli are represented in primary visual cortex.

 

More

Neuronexus A2x16-10mm-150-500-177-A32, 2-shank laminar probes were used to record the control frequency tuning profile of the guinea pig inferior colliculus. The animals were then acutely deafened and probe recordings were used to characterize inferior colliculus activity during use of cochlear implants with different stimulation profiles. This study in Hearing Research points to a solution for reducing channel interactions in cochlear implants, with the potential to improve speech detection for cochlear implant users.

 

More

Koch et al. from John Wolf’s Lab published their study on functional status of hippocampal neurons after traumatic brain injury (TBI). A NeuroNexus 32-channel probe (A1X32-Poly2-5mm-50s-177-H32) was used for laminar recording in CA1 in a rat TBI model. They reported that hippocampal CA1 single-unit activity post-TBI can maintain a normal firing rate despite significantly reduced, layer-specific loss of input. However, maintaining normal synchronization to the dominant oscillations within the hippocampus is impaired.

 

More

Lipinski et al. published their study on adult neuron identity recently! A NeuroNexus 32-channel linear array with 50um site spacing (approx 1.5mm recording span) was used to record simultaneously from the CA1 and dentate gyrus in mutant mice with an inducible genetic mutation to delete two transcriptional co-activators. Across acute multi-channel recordings, drops in activity were observed within 2 weeks of genetic ablation.

 

More

Newsfeed

Meet our newest iteration of electrophysiology microdrives!

We’ve reimagined our oDrive and dDrive with your user experience in mind. Using years of customer feedback to guide our designs, we created these products to have extra durability and ease-of-use while staying cost effective. You’ll enjoy a resolution of 250µm/turn using our M1x0.25mm threaded drive screw and compatibility with NeuroNexus electrodes and connector packages up to 64 channels.


Learn More

 


New product package: H128LP

NeuroNexus has just released H128LP, a new 128-channel package. This compact package is intended for chronic recordings and can interface with 32- and 64-channel headstages. The H128LP is an alternative to the NeuroNexus S-series and I-series probes, and comes in an acute option also: the AC128. Contact our sales team at sales@neuronexus.com to learn more about this new NeuroNexus product.

Webinar on non-periodic electrical stimulation!

Please join us for an exciting presentation by Vinícius Rosa Cota, PhD, on nonperiodic stimulation (NPS). Dr. Cota is an assistant professor in the department of Electrical Engineering at the Universidade Federal de São João Del-Rei, Brazil. He is the leader and founder of the Laboratory of Neuroengineering and Neuroscience (LINNce) at his institution and we're thrilled to have him share his research with our webinar participants. Register here!

Happy Fourth of July!

Nature conference!

NeuroNexus Founder, Managing Director and CEO, Dr. Daryl Kipke, is one of the excellent presenters at the Technologies for Neuroengineering Virtual Conference coming up in 2 weeks. Register here !

Happy weekend!

For those who haven't participated already, NeuroNexus is collaborating with Tracy Cui and her lab at University of Pittsburgh to gauge interest and customer preference on a protein-based neural probe coating. Please take a couple minutes to complete the survey here: https://lnkd.in/eXT3952

Configuration Guide

NeuroNexus is all about continuous, customer-driven innovation. That's where our huge variety of designs comes from. With so much to choose from, we're re-publishing our configuration guide for you. This empowers you to read the most useful information out of our design names and to choose the solution for you.

Happy New Year!

Neural Implant Podcast

We're on a podcast! Neural Implant Podcast host Ladan Jiracek presents our summary of the recent symposium. If you missed the Neurotechnologies Symposium, recordings of all speaker presentations are available now.