Multiple NeuroNexus probe designs (A2x32-5mm-25-200-177, A4x8-5mm-100-200-177, Buzsaki32 and Buzsaki64) were used by Andrew King’s lab at Oxford to record from primary sensory cortices, auditory thalamus and inferior colliculus in mice. NeuroNexus probes were also combined with optical stimulation for optogenetics experiments and with DiI dye for acute penetration histology in this study in Nature Communications. The results demonstrate that activity in somatosensory cortex caused by whisker stimulation suppresses sound-evoked activity in primary auditory cortex via the colliculus and thalamus, providing an example of subcortical pathways mediating intra-cortical communication.
Read publicationThe Kraskov group used NeuroNexus 32-channel polytrodes (A1x32-Poly3-5mm-25s-177) to record fast and slow motor cortex (M1) pyramidal tract neurons (PTNs) in macaque. Their findings emphasize the importance of pairing electrophysiological and optogenetic approaches in classifying neurons into anatomical and morphological categories.
Read publicationRichter et al. explored the possibility of exchanging neural information between the brains of guinea pig and human. They determined characteristic frequency and recorded guinea pig inferior colliculus (ICC) neural response patterns to single spoken words with NeuroNexus A1x16-5mm-100-177 probes. The single-word spike trains were then played through corresponding electrodes of cochlear implants in human subjects. Subject performance on a few word recognition tests was better than chance, confirming the possibility of lexical information transmission from an animal auditory system to the human auditory system.
Read publication